文章编号:0258-7025(2002)03-0233-03

Ce:LiM(M = Ca ,Sr)A1F₆ 晶体生长 与性能研究

那木吉拉图^{1,2},李京民³,袁 静¹,阮永丰¹

(1天津大学理学院物理系,天津 300072; 华北光电技术研究所,北京 100015; 河北建筑科技学院电子系,邯郸 056038)

提要 报道了在 CF_4 气氛中生长的掺 Ce^{3+} 的 LiM $M = Ca Sr)A1F_6$ 晶体和掺 Ce^{3+} 的 $LiSr_{0.8} Ca_{0.2}AIF_6$ 混晶,以及 Ce^{3+} 在这些晶体中的紫外吸收光谱及有效分凝系数。 $Ce^{3+}: LiSr_{0.8}Ca_{0.2}AIF_6$ 在 240~280 nm 波长范围内有连续展宽的吸 收带,它的有效分凝系数为 0.037。 Ce^{3+} 的吸收带展宽是由于 Ce^{3+} 替代晶体中二价离子位引起的,表明 Ce^{3+} 在 Colquiriite 结构的晶体中替代的是二价位。 关键词 LiM $M = Ca Sr)AIF_6$, Colquiriite 结构晶体,紫外吸收光谱,有效分凝系数

中图分类号 0782 文献标识码 A

Study on Crystal Growth and Properties of Ce :LiM(M = Ca ,Sr)AlF₆ Crystals

NA Mujilatu^{1 2} , LI Jing-min³ , YUAN Jing¹ , RUAN Yong-feng¹

¹Physics Department of Tianjin University, Tianjin 300072

²North China Research Institute of Electro-optics, Beijing 100015

³Electronics Department , Institute of Architectural Science and Technology of Hebei , Handan 056038

Abstract Crystal growth of Ce^{3+} doped LiM(M = Ca, Sr)AlF₆ mixed crystal were successfully carried out in CF₄ atmosphere. The UV absorption spectra and the effective segregation coefficients of Ce^{3+} ions in these crystals were measured and reported. Ce :LiSr_{0.8}Ca_{0.2}AlF₆ crystal shows a broaden absorption band in the wavelength range of 240 ~ 280 nm , and the effective segregation coefficient of Ce^{3+} ions in the mixed crystals is 0.037. It is believed that the broadening of the absorption band in the Ce:LiSr_{0.8}Ca_{0.2}AlF₆ crystal was caused by substitution of Ce^{3+} ions for divalent ions in the Colquirite structure crystals.

Key words LiM M = Ca Sr)AlF₆ , Colquiriite structure crystals , UV absorption spectra , effective segragation coefficient

1 引 言

自 1971 年 Viebahr^[1]首先报道了 LiM^{II} N^{III} F₆(其 中 M^{II} = Ca Sr ,Cd :N^{III} = A1 ,Ga ,Ti ;V ,Cr ,Fe)系列晶 体以来 ,Colquirite 结构的晶体(如 LiCaAlF₆ ,LiSrAlF₆ 晶体等 ,以下分别简写为 LiCAF ,LiSAF)得到了广泛 的研究和应用。目前掺 Cr³⁺的 LiCAF ,LiSAF 晶体已 广泛应用在 780 ~ 1010 nm 波长范围内的可调谐激 光器的研究与开发中^[2]。与此对应 ,近年来掺 Ce³⁺ 的 LiCAF ,LiSAF 晶体的研究也得到了大家的关注 , 并进行了广泛的研究。由于掺 Ce³⁺ 的 LiCAF , LiSAF 晶体的吸收波段对应在现有 Nd: YAG 激光4倍 频的波长处,故这种晶体在全固体化紫外可调谐激 光器的研制中得到了重视,并期待着在医疗、环境测 试等领域的应用开发。

另一方面,掺杂离子的占位问题是学术界普遍 关心的问题。由于 Cr^{3+} 离子的半径和电荷数都和 Al^{3+} 离子类似, Cr^{3+} 在 LiCAF,LiSAF 晶体中替代 Al^{3+} 离子的位置是大家公认的。目前正在研究的掺 Ce^{3+} 的 Colquirite 结构的晶体有 LiSAF,LiCAF,LiSr_{0.8} $Ca_{0.2}AlF_6$ (以下简称为 LiSCAF),LiCaGaF₆,LiSrGaF₆ 等较多的种类,学术界对于在这些晶体中掺入 Ce^{3+} 时, Ce^{3+} 离子究竟是替代三价离子(如 Al^{3+})位,还

收稿日期 2000-12-21; 收到修改稿日期 2001-03-08

作者简介 :那木吉拉图(1968—),男(内蒙古族),博士研究生,主要从事光电子材料研究。

是替代二价离子(如 Ca^{2+})位的问题尚有争论^[3]。 本文报道 Ce^{3+} 在 LiCAF, LiSAF, LiSCAF 晶体中的紫 外光谱特性和有效分凝系数的比较,并探讨 Ce^{3+} 在 Colquirite 结构的晶体中的占位问题。

2 实 验

晶体用提拉法生长。加热方式为电阻加热(石 墨发热体)。晶体生长使用了高纯(99.99%)的 CeF₃,LiF,SrF₂,CaF₂,AIF₃原料。由于生长过程中 AIF₃,LiF的挥发较大,因此配料时AIF₃,LiF的比例 分别比化学计量比大 5 mol.-%,3 mol.-%,CeF₃的 掺入浓度为 0.5 mol.-%。将配好的原料直接投入 铂金坩埚并装入单晶炉,进行抽真空。为了尽量清 除炉腔内 O₂,H₂O 等含氧化合物,在炉腔内真空度 大约为 10 Pa 时开始一边加热一边抽气,直到 700℃ 左右。这段过程大约需 12 h 左右。这时炉腔内的 真空度一般大约为 2×10^{-2} Pa。达到上述温度和真 空度时,炉腔内充入高纯 CF₄ 气,充到 1 个大气压后 升温熔料,然后开始晶体生长。

为了了解 Ce³⁺离子在这些晶体中的光谱特性, 测量了这些晶体在室温下的紫外光谱,并进行比较。 同时使用 ICP 方法对 Ce³⁺在 LiCAF, LiSAF, LiSCAF 晶体内不同位置的浓度进行分析。并计算了其有效 分凝系数。

3 结果与讨论

图 1 显示了 CF_4 气氛中生长的 Ce: LiCAF 晶体 的典型毛坯。同样我们也成功地生长出了 Ce: LiSAF 和 Ce: LiSCAF 晶体。所有这些晶体外型整齐,无色透 明 质量良好。这些晶体室温下的紫外吸收光谱如 图 2 所示。从图 2 可以看到, Ce^{3+} : LiSCAF 在240~ 280 nm 波长范围内有连续展宽的吸收峰,此吸收峰 的宽度比 Ce^{3+} : LiSAF, Ce^{3+} : LiCAF 晶体的相应吸收 峰都宽。其主要原因是三价离子 Ce^{3+} 在被掺入 Colquirite 结构的晶体时,由于其离子半径比 Al^{3+} 大 得多,如果替代 Al^{3+} 位置时将造成晶格畸变较大, 故较难进入,而 Ce^{3+} 进入离子半径与它接近的二价 离子(如 Ca^{2+})位置则相对容易。事实上,早在文献 [3 泼表之前,有些学者已经报告在加入一价

图 1 CF₄ 气氛中生长的 Ce:LiCaF₆晶体的典型毛坯 Fig. 1 Photograph of Ce:LiCaAlF₆ crystal grown in

CF₄ atmosphere

图 2 Ce:LiM M = Ca Sr)AlF₆ 晶体紫外吸收光谱 Fig.2 UV absorption spectra of Ce LiM M = Ca , Sr)AlF₆ crystals 1:LiCaAlF₆; 2:LiSrAlF₆; 3:LiSr_{0.8}Ca_{0.2}AlF₆

Na⁺离子后,Ce³⁺在这些晶体中的有效分凝系数加 大 表明 Ce³⁺ 替代的是二价离子位置,而加入一价 Na⁺离子可以解决电荷不平衡的问题⁴]。按照 Ce³⁺ 在 Colquiriite 结构的晶体中替代二价离子的观点,它 在 LiSCAF 晶体(混晶)中 ,替代的位置有 Ca²⁺ ,Sr²⁺ 两个可能的位置 这导致了其吸收带由 Ce: LiCAF 和 Ce: LiSAF 二种吸收峰叠加而成,使吸收带加宽。并 且在 Colouiriite 结构中,每一个二价离子周围有6个 二价离子(但不是最近邻),因此在混晶中,被 Ce3+ 占据的中心二价位的周围的二价位,可以分别被1 至6个异种二价离子占据,正是 Ce³⁺离子周围环境 的多样性,造成 Ce³⁺:LiSCAF 晶体(混晶)的吸收峰 连续加宽。在图 2 中 Ce: LiSCAF 的光谱(曲线 3)较 接近于 Ce: LiSAF(曲线 2)的光谱,这是因为在混晶 中 LiSAF 的成分较多。所以,我们的数据从另一个 侧面证实 Ce³⁺在 Colquiriite 结构的晶体中替代了二 价位的观点。但要注意 Ce: LiSCAF 和 Cr: LiSCAF 有 所不同 根据文献 5 6 的报道 Cr: LiSCAF 晶体光谱 类似于 Cr: LiSAF 吸收峰只是整体平移,并未观察到 连续展宽的现象,这是因为在 Cr:LiSCAF 晶体中, Cr³⁺替代的是三价位置,而这几乎是定论。

根据上述 Ce³⁺ 在 Colquiriite 结构的晶体中替代 二价位的观点,还可以看到,由于 Ce³⁺ 在代替二价 位时电价不等,且半径也较大,因此较难替代,这对 晶体生长及其激光效率的提高都不利。所以在这种 结构的晶体中,Ce³⁺的有效分凝系数是个重要的评 价因素。

根据测量数据计算的有效分凝系数的平均值分 别为 *K* = 0.021(LiCAF), *K* = 0.017(LiSAF)和 *K* = 0.037(LiSCAF)。有效分凝系数的详细计算方法参 见参考文献 7],简单说来,就是将一块晶体分段切 割 逐段称量各段晶体的质量,得到相应的析晶率 g,并测量各段对应的 Ce³⁺离子浓度 *C*,再利用 *C* 与析晶率g 及有效分凝系数 *K* 之间的关系式

$$C = KC_0 (1 - g)^{k-1}$$
 (1)

就可计算出各段晶体的有效分凝系数,最后取平均 值。表 1 列出上述三种晶体分别切成 5 段的测量结 果,其中 Ce^{3+} 离子浓度是使用 ICP 方法测试的。实 验中, Ce^{3+} 离子初始浓度 $C_0 = 0.5 \text{ mol.}-\%$ 。

表1	Ce ³⁺ 在 LiCAF 结构晶体中浓度的 ICP 测试结果以及相应的析晶率
	Table 1

Ce:LiCaAlF ₆		Ce:LiSrAlF ₆		LiSi _{0.8} Ca _{0.2} F ₆	
g /%	C /mol%	g /%	C /mol%	g /%	C / mol %
0.6	0.0105	2.5	0.0087	1.1	0.0187
4.8	0.0110	13.8	0.0098	11.2	0.0207
11.4	0.0117	20.6	0.0106	28.8	0.0256
19.2	0.0129	27	0.1446	37	0.0268
23.6	0.0135	_	-	42	0.0322

图 3 显示了用这些有效分凝系数画出来的 *C*/*C*₀ 与 *g* 的理论曲线及相应的实验结果。理论曲 线和测试结果比较接近。根据这些结果可以看到, LiSCAF 晶体由于其有效分凝系数大,是提高 Ce³⁺浓 度较好的候选材料。所以,无论从吸收峰宽度或从 有效分凝系数来看,Ce:LSCAF 晶体是紫外全固体化

图 3 C/C₀随析晶率 g 变化的实测结果(实验点)和 理论曲线

(连续线 根据 K 值计算 参见文献 7])

Fig. 3 C/C_0 as a function of the solidified fraction g:

measured value (separate points), theoretic value

(continue curve, calculated according to
$$K$$
, see Ref.[7])
1:LiStrate Carlos Alexandre K = 0.037:2:LiCaAlexandre K = 0.021:

$$3: \text{LiSrAlF}_6, K = 0.037, 2: \text{LiCarF}_6, K = 0.021,$$

可调谐激光器研究中值得探索的材料。

参考文献

- 1 W. Viebahn , Z. Anorg. Allg. Untersuchungen an quaternaren Fluoriden LiMe^{II} Me^{III} F_6 Die [J]. Chem. , 1971 , **386** :335 ~ 339 (in Germany)
- Martin Stalder, Bruce H. T. Chai, Michael Bass. Flashlamp pumped Cr:LiSrAlF₆ laser [J]. Appl. Phys. Lett., 1991, 58 (3) 216 ~ 218
- 3 D. Klimm, P. Reiche. Nonstoichiometry of the new laser host LiCaAlF J]. Cryst. Res. Technol., 1998, 33(3):409~416
- 4 Vida K. Castillo, Gregory J. Quarles. Progress in the crystal growth of Ce : Colquiriites [J]. Journal of Crystal Growth, 1997, 174 337 ~ 341
- 5 B. H. T. Chai , J. Lefaucheur , M. Stalder *et al*. Cr: LiSr_{0.8} Ca_{0.2}AlF₆ tunable laser [J]. *Opt. Lett.* , 1992 , **17** :1584 ~ 1586
- 6 Keith Holliday, D. L. Russell, J. F. H. Nicholls et al.. On the lack of influence of disorder in Cr³⁺-doped LiSr_{0.8}Ca_{0.2}AlF₆
 [J]. Appl. Phys. Lett., 1998, 72(18) 2232 ~ 2234
- 7 Namujilatu, Xu Xuezhen, Yuan Jing et al.. The effective segregation coefficient of rare earth ions in LiYF₄ crystal [J]. J. Chinese Silicate Society (硅酸盐学报), 2001 29(6) 584 ~ 586 (in Chinese)